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Abstract: A new method called the coverage plot is proposed to measure and estimate the variability of an estimated contour
of a probability density function defined on a region in the plane. Simufation techniques including sectioning and bootstrap
methods are compared for a particular problem, which is from the operation of weapons {iring ranges. The roles of bias and

sarnple size are aiso seen in this example,

I INTRODUCTION

Consider a problem in which & probability density func-
tion defined over a two-dimensional region i3 estimated
and the outcome of interest is a confeur of this probabil-
ity density function. Our goal in this paper is to assess
methods of estimating the variability of the estimated
contour.

This problem arises frequently for random variables
having a spatial distribution, when the question of in-
terest is: for what regions is the probability below some
level? For us, this question arose from considering the
safety of weapons [iring ranges, and the question of in-
terest was: in what regions is the probability that a
bullet lands in the region below a specified level? This
problem is of practical importance because it is the cen-
tral issue in assessing the risk to the public and also
to the environment resulting from the operation of fir-
ing ranges. There has been increasing concern for the
safety of the public and military personnel during the
operation of weapons firing ranges, which has been ex-
pressed through the creation of international working
groups such as the International Range Safety Advisory
Eh‘oup and the NATO Range Safely Panel. It also has
some features which make it different from usual statis-
tical applications of density estimation. We shall give
several examples below, all coming from this source. In
this application, we have the advaniage that we can
compute an approximation to the unknown probabil-
ity density function by Monte Carlo simulation; thus
we can assume that we have available arbifrarily large
sample sizes, and in particular, we shall see that it is
useful to consider simulating directly the sampling dis-
tribution of cur estimator. This oplion will not usually
be available in the more traditional statistical setting
where one needs to be able to estimate variability of es-
timates without collecting more data. Nonetheless, it
will be seen that our methods will have some relevance
for these traditional applications, too. In particular, we
shall consider a bootstrap algorithm which will be ap-
plicable when the sample has been coliected rather than
generated by simulation.

Because of the nature of the problem which led to our
interest in this guestion, we need to consider a special
type of contour of a probability density function. Let f
be the probability density function of a continuous ran-

dom variable defined on a continuous region in the plane.
(In practice we shall deal with discrete approximations
below, bub here we are discussing the ideal situation.)
HO < a1, we define the a-contour of a probability
density function f to be a level set of f such that the
total probability outside the boundary is . That is, the
a-contour C, satisfies

1. there is £, > 0 such that Co = {z : fix} = f. }

2 fp fra where Uy = {2 : f(z) < {4},

By the continuity of f, there is such an £,, and C,
will be a curve or set of curves except in pathological
cases. We refer to points x € U, as being cutside the
contour C, and points x with f(x) > £, as being inside.

Note that there are two things {o estimate here: the
probability density f and the level £,. A natural way to
proceed will be to estimate f by f say and then obtain £,
as the appropriate level of f, so that (2) is satisfied for f.
Since this involves estimating the probability outside the
required contour, it may be expected that the sampling
properties of estimates constructed in this way wiil differ
from those of estimates of the probability density f. We
amplify this in the next section.

It may also be noted that estimation of a-contours
s & natural extension to two-dimensions of estimating
quantiles or tails of a univariate density. This extension
s not trivial, however, as a quantile 1s a point but an
c-contour 18 a curve. Hence the target of our estima-
tion is inherently infinite dimensional, and nonparamet-
ric methods will be required (since we do not know the
form of f).

2 BINGLE FIGURE MEASURES OF VARI-
ABILITY

As stated in the introduction, & natural approach to our
problem is to estimate f by f and then construct the o-

contour Oy, of f; we would then use O, as an estimator
of . We assume throughout that this is the way we
construct our estimates.
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2.1 Approaches based on distances between f
and f

One might hope that knowing how close f s to f, in
some sense, would tell us how close O, s to C in some
— possibly different -~ sense. Measures of how close [ is
to [ are typlcally constructed via integral norms on the
space of densities to which § can belong. Thus typically
wa would use integrated sguared error, or expected inte-
™D

grated squared error E [(f — F)° as a measurce of close-
ness. Such measures are attractive because estimates of
them are well understood and easily obtained as part of
standard density estimation procedures. (See the book
by Scott, 1992, for example.) Further, estimates of f
can be constructed which minimise the estimated mea-
sure of closeness.

This seems very salisfactory, but in reality is not, as
the goal of getting f close to f is different {rom gefting
O, close to O, The density estimates f that are good
for approximating [ closely will not necessarily be good
{or approximating .

The use of a global measure of the variability of f
will miss the important point that the varlability of O
will demend on how much smoothing in the low density
regions of f is carried out during the copstruction of
7. Since we need to estimate an integral over the low
dlensity region, this is much easier than estimabing the
valires of f at individual points in the low deusity region.
Note too that the gize of ¢ will be important here: the
smaller o is, the more important such considerations
will become.

The main disadvantage of trying to use Lhe variability
of estimates of f as a way of measuring the variability
of O is that it simply tries to measure something in
the wrong place. We are trying to measure the size of
an error by looking at the range of f when we should
be looking at the demain. We therelore abandon ap-
proaches based on norms eon spaces to which f might
belong and consider an approach bussed on a natural
mesasure of distance between two sets in the domain of

2.2 Approaches based on symmetric difference

Fecall that the symmetric difference AAE between the

sets A and B s

AAE = (AUR)N(AUB)

where X denotes the complement of X. If we wani o
sompare two candidate contonrs, one method is to look
at some measure of the size of the symmetric difference
hetween their interiors. A natural measure of this s
is the area of the svimmmetric dilference, Ancther is the
probability content of the symunetric difference. How-
ever, there ave two difficulties here: although smallness
of either of these two measures guarantees closeness of
the two contours, there s no information in the measure
about where they are close and where they are far apart;
secondly, these measures are not tractable analytically.
The first of these two difficulties will of course apply to
any single figure-of-merit that we bry to use, Since i
practice we do not expect to be able to estimate equally
accurately ab all parts of & contour, knowing where we
may be close and where not will be important to us,

For these reasons, we are going to introduce a new
method of measuring the sampling veriability of an es-
timated contour. But let us describe the techniques of
sectioning and bootstrap first.

3 SECTIONING AND BOOTSTRAP

We assume for the sake of exposition that we are dealing
with a probability density funclion defined on a compact
rectangle in the real plane, and that we have available
a method of generating samples from that density. We
consider in this part of the paper the method of sec-
tioning (Lewis and Orav, 1989, Chap 9), also known as
batching {Kleijnen, 1988, Schmeiser, 1990). We gener-
ate B sections of independent (both within and between
sections} observations, all of the same size b. Thus the
sample size n = B, This idea is specifically inspired by
the simulation context, in which observations (ie points
in the rectangle) are typically generated independently
one ab a time and stored before being used. The sec-
tions are then just the first b observations, the second b
ohservations, ete. (The ordering here is the order of gen-
eration.} The sectioning method relies on independence
of the observations. Tt can also be employed with a sam-
ple obtained by means other than simulation, provided
the independence condition is satisfied.

We treat each section as an independent sample of
size b {which is just what the sections are) and compute
an a-contour for each section, This gives us B inde-
pendent observations U, k= 1,..., B, from the sam-
pling distribution of C,, when this estimator is based
on a sample of size 5. Thus we have simulated directly
the sampling distribution of the estimator €, with the
smaller sample size b

Instead of simulating directly the sampling distribu-
tion of (', (with the smaller sample stwe ) by construct-
ing the sectional sstimates Che, b = 1,.... B, one can
instead simulate the bootstrap distribution. (See for
example Hall, 1092) For k= 1,..., 8, let O] be the
contour obtained from the kth resample. (A resample
is a sample of size n drawn independently with replace-
ment and equal probebility from the original data) We
then trest the collection of O, in the same way as the
section estimates of the preceding subsection. This tech-
nique has the advantage thab it uses the correct sample
size n (instead of b in the case of sectioning); this is also
its disadvantage if » is very large (because of the large
CPU time needed). 'This technique also suffers from bias
problems in this context, as we shall see below,

4 COVERAGE PLOTS

For each point = in the plane we can define the coverage
probability at z by

CP{zy = Pix lies inside T}
where ', is an estimator of the a-contour. Suppose we
have gimulated 2 set {Che 1 & = 1,..., B} of contour

estimates (eg by sectioning or bootstrap). Then we can
estimate this coverage probability by

5}3(3) = proportion of & such that x is inside Crn.
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This defines a function which we can plot. In practice we
shall be working with discrete versions (ie with pixels)

so we shall define OUF as a function of pixel location.
The resuilt of such a computation can then be presented
conveniently as a grevscale plot, as in Figure 2.

In this Figure, the dark grey pixels are those which
are inside the contour for all & (B = 200}, the white
pixels those that are inside for no &, and the remainder
are somewhere in between. {The scale on the right of
the Figure shows the precise greyscale mapping.) This
picture shows muich more vividly the location of high
variability regions than do the single figure measures
described. In addition, it is easier to compute! However
it does have the disadvantage that one cannot easily
assign a number to the variability in a region in a way
that would lead to a hypothesis test, for example.

The probability plotted in a coverage plot can be
thought of as a posterior probability for the event
{pixel inside (L}

5 BEXAMPLES AND DISCUSSION

All of the examples that are discussed below are the re-
sults of applying our technigues to the output of & com-
puter program that simulates the firing of many bullets
down a firing range and recording their final impacts
(after possibly one ricochet]. We are interested in de-
scribing the density of impact points in terms of the
a-contours of the density of impact points especially for
very low as. The motivation for using these very low
values is that the purpose of the computation is bo as-
sess the safety of a firing range {i.e. risk management);
Lence one is particularly interested in regions of low im-
paci intensity.

Because of the small os we use, we have needed large
sample sizes and also to employ a weighted sampling
scheme to reduce variance. Thus the sample sizes we re-
port are nominal, the effective sample sizes being much
larger, because of the weighting.

An important feature of our methods is thal we can
pool estimates. In fact we estimate the density of
impact points by acoumulating a histograme of impact
points and then applying a linear smnoother (Scott's two-
dimensional ASH routine, Scott, 1992). This means that
the overall density estimate from a number of replica-
tions can be obtained as the average of all the estimates
for individual replications. However the contours are
not linear in this way. Indeed, it was this nonlinearity
that led us to the coverage plot idea,

Fach pixel in all the figures represents a cell on the
firing range measuving 10 metres by 20 metres (z by
y). The support of the equivalent convolution kernel (ie
fiter or mask) is 80 metres by 260 metres (x by y) in
all applications of ASH.

A perspective plot of the smoothed probabilify his-
togram of 200 million bullets’ impacts on the firing range
is shown in Figure 1. R

We describe first our sectioning examples, then our
bootstrap examples.

5.1 Coverage plots by sectioning

In Figure 2 we show coverage plot for the 107 3-contours
obtained in 200 replications of an experiment in which
the sample size was one million. The contour (solid
curve} is computed from all the data {ie sample size 200
million}, We shall call this grand contour, hecanse it
is the contour of the grand mean. It will he seen that
Lhe grand contour is nicely placed nside the region of
high variabiliiy {ie the region corresponding to about
i
60 out of the total 200, valne of CF about 0.3). This is
an indication that with a sample size of one million one
obtains approximately the same bias as with a sample
size of 200 million; hence we may in this case assume
the bias has been reduced o negligible levels. We can
be confident that the indicated area of high variability
represents a properly located confidence region for the
10 3 contour, of a width appropriate to the sample size
being used. Since we expect a reduction in variance
through increasing the sample sive, we may assume that
the confidence region is conservative {Le. too wide). To
determine the confidence level for the confidence region
is very much more difficult: we would have to interpret
C'F values more carefully, take into account noninde-

pendence of the UF values and allow for the fact that
we would require a simultanecus confidence region. This
goes beyond the scope of this paper, so we do not pursue
it further here.

I Figure 3, the 10~ Scontour is plotted for sample
sizes of 25 million (dotted) and 200 million {solid). It
will be noted that the solid contour lies outside the dot-
ted contour except for the small “island” near (-500,
2800}. This Figure, incidentally, demonstrates the need
to consideran indicator of variability that shows the spa-
tial distribution of the variability as well as indicating
the amount. In parts of the Figure, the two contours
are very similar, while in others the main difference is
in the greater smoothness of the contour based on the
larger sample size.

5.2 Coverage plots by bootstrap

In Figure 4 we see a coverage plot as the result of boot-
strapping an original sample of size n = 300,000. This
sample size was chosen for computational reasons (see
the REMARK in the next subsection). If the sample size
had besn the one million of the preceding section, the
computation would have taken months on a fast work-
station! Most of that time would have been spent read-
ing and writing to disk.

When we examine this plot we see that the contour
hased on the original sample i outside most of the con-
tours produced by the resampling. The reason for this is
ol course that the histogram produced by the bootstrap
resampling has support contained o the support of the
original sample histogram. Thus the variation canp only
be “inwards”.

5.3 Sectioning versus bootsirap

It is very difficult to compare the bootstrap and section-
ing coverage plots, because the two methods are appro-
priate under different circumstances,

To understand this, we compare the boolstrap and
sectioning lechniques wilh the same total sample size



n. Iigure 5 shows the result of computing a sectioning-
based coverage plot. The sample was divided into B =
200 sections of sizge b = 1,500, to give a total sample
size of n o= 300,000, The grand 107 %contour based on
all the observations is the solid curve. Bias problems
are evident here since the grand contour lies mainly in

the region where C'F is zere. The secfion sample size
of b = 1,500 results i :chion estimates ), that are
too wiggly fo be usefnl, sines i plain that the grand
contour is vory wiggly, and hence the estimated contours
with the smaller sample size are even worse. {Plotting

a few confirms this.)

Compare this with the situation in Figure 4, In which
the estimates are based on 500 bootstrap resamples rom
a sample of size n = 300,000 There 15 still soms evi-
dence of bias in the estimator based on a sample of size
300,000, but the results are much more satisfactory in
this case,

The bias revealed in Pigure 5 is of the estimator based
on a sample of size only 1,500 We see here the great dis-
advantage of the sectioning estimator: it uses the wrong
sample Thus, if the sample size n and the number
ol sections £ are chosen so that th - sample size
{==n/13) s too small, the sechion estimates may be too
biased and too variable to be useful.

On the other hand these examples also show indi-
rectly the disadvantage of the bootstrap estimator. The
repson for keeping the sample sive down to 300,000 was
that this was the largest sample size for which resam-
ples conld be computed in & reasonable time. 1o fach the
sechbioning methed was generally much gquicker to com-
pute in this particular problem because of Hmitations
of the hardware configuration employed. Resamphing a
particular datapoint at random reguived 2 random {ic
addrossed) disk access unless the original sample wes
small enough to be held in BAM (ie main memory). On
the other hand, generating a new data point required

solving T

aome differential equations, This could be done
in RAM very quickly on a computer on which fHoating
point operations were efficlent. The consequence of this
was that i was quicker to compute a new point than 4

0
fired 2 parbicular old one from the original sample. (See
the REMaRK below.! This means that under these cir-
enmstances [or the estimates using sectioning, the over-
all sample size n was lmibed by the time allowed, while
for the boobstrap the sample size was limited by the
amoutt of RAM available. Under these circumstances
then the sectioning method cutperformed the bootstrap
mebhod,

Bemank:  Both the sectioning and the bootstrap
methods need to have observations generated elsewhere
by another code. The UFU time was about one hour
to generate a sample of size one million. {For all the
compubations in this paper, we used an HP 9000/726
workstation with 16 b RAM.) Then, we needed about
3 sevonds UPU to compute one section estimate.

However, for the bootstrap ancther story emerged.
The maximum sample size was 200,000 if the resampling
was done in HAM. The CPU time was 3 seconds per

rap sample size 200,000). If a sequen-

bootstrap 5
tial resampling method (generating the random num-
bers first, combining and sorting them before reading
the samples sequentialiy}) was used, the maximum sam-
ple gize could be hapdled in RAM was 300,000,
But the time to perform one bootstrap was then 50 sec-
onds CPUL I we removed the restriction tmposed by the
size of RAM by using a direct access resampling method

{read each sample from disk in direct access mode when
a random number is generated), the CPU time for a
bootstrap sample size of one million was as much as 14
hours to create one resamplel

§ CONCLUSION

Which of these methods do we prefer? We regard Pig-
ure 2 as our moest informative. This plot allows the spa-
tial distribution of variability to be seen clearly, so that
regions of high variability can be identified. This would
not be possible with wse of a single figure-of-merit.

Bverywhere that sectioning was used, bootstrap could
have been used, on a big encugh computer, The limita-
tions caused by our hardware storage strategy make the
boutstrap unacceptable to us for the particular prob-
fem we have used as illustration, because here sam-
Pling s less expensive than resampling. In applications
where the data are collected experunentally rather than
Lhrough simulation, this will rarely be the case, so the
bootstrap would probably be favoured for those.
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Figure 1: Perspeciive plot of histogram (logarithmic transformed) of 200 million bullets’ impact.
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Figure 3: 10~ %-contours from sample sizes (n) of 25 million (dotted) and 200 million (solid).
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